Preliminary communication

Bis(carbene) complexes of gold(I) and gold(III)

GIOVANNI MINGHETTI and FLAVIO BONATI

Istituto di Chimica Generale dell'Università, via Venezian 21, 20133 Milano (Italy) (Received April 3rd, 1973)

SUMMARY.

The preparation of $[(carbene)_2 Au]^+ ClO_4^-$, $[(carbene)Au(C_6H_{11}NC)]^+ ClO_4^$ and of $[(carbene)_2 AuI_2]^+ ClO_4^-$ is reported.

The addition of a nucleophile, such as an alcohol or an amine, to a coordinated isocyanide molecule yielding a carbene complex, *e.g.*

 $M \leftarrow CNR + H - Y \rightarrow M \leftarrow CY - NHR$ (Y = OR, NHR)

is now well established^{1,2}. Nevertheless, compounds with more than one carbene ligand are uncommon and those containing only carbene ligands are rare, e.g.³ [{(MeNH)₂ C}₄Pt]²⁺ and⁴ [Hg{C(OR)(NR₂)}₂]²⁺.

The ionic, dicoordinated derivatives, $[(R-NC)_2 Au]^+$, obtained⁵ during our investigations⁵⁻¹⁰ on isocyanide complexes of gold, react with *p*-toluidine in chloroform at room temperature or with refluxing methanol (4 days) according to the following schemes:

$$[(Ar-NC)_2Au]^+ClO_4^- + 2Ar-NH_2 \rightarrow [\{(Ar-NH)_2C\}_2Au]^+ClO_4^-$$
(I)

$$[(C_6H_{11}NC)_2Au]^+ClO_4^- + Ar - NH_2 \rightarrow [(C_6H_{11}NC)AuC(NH - C_6H_{11})(NHAr)]^+ClO_4$$

(II)

$$[(Ar-NC)_2 Au]^+ClO_4^- + 2 MeOH \rightarrow [\{(Ar-NH)(MeO)C \}_2 Au]^+ClO_4^-$$
(III)

While coordinated aryl isocyanides allow the formation of bis(carbene) complexes, coordinated cyclohexyl isocyanide makes nucleophilic attack more difficult, so that, under

identical experimental conditions, only 1/1 addition takes place. The high reactivity of the ionic compounds is due to their positive charge which makes the cations better electrophiles than the neutral species⁵.

Compound (I) is oxidized by halogens in chlorinated solvent, yielding compound (IV), readily purified by crystallization from dichloromethane/ethyl ether:

$$[\{(Ar-NH)_{2}C\}_{2}Au]^{+}ClO_{4}^{-} + I_{2} \rightarrow [\{(Ar-NH)_{2}C\}_{2}AuI_{2}]^{+}ClO_{4}^{-}$$
(I)
(IV)

Compound (IV) is the first carbone complex of gold(III), isoelectronic with platinum(II) for which carbone complexes are known^{1,2,10}. Although the perchlorate contains two metal—carbon bonds and ligands with a formally divalent carbon, it is stable even in solution and melts without evident decomposition.

All the compounds^{*} show the required $\nu(NH)$, $\delta(NH)$, and $\nu(C=N^+)$ bands at ca. 3240–3280 (broad), 1595–1600, and 1545–1575 cm⁻¹, plus the two absorptions required by a perchlorate ion having T_d symmetry, at ca. 1090 (broad and very strong) and 620 cm⁻¹. In addition, compound (II) shows a strong band due to coordinated C₆H₁₁NC at 2254 cm⁻¹, a value quite similar to that observed in $[(R-NC)_2 Au]^+ClO_4^-$.

The NMR spectra, recorded in $CDCl_3$ solution for compounds (I), (II), and (IV) are in agreement with the proposed formulae. In particular, the HN-Ar proton is found as a broad singlet between τ 0.06 and 0.50, while the NH proton adjacent to the cyclohexyl group is a broadened doublet at τ 1.74 having J 9 cps. For compound (III), the spectrum, recorded in $(CD_3)_2$ CO, shows the required signals indicating the presence of two geometric isomers, one having a methoxyl signal at 5.78 and the other at 5.50.

ACKNOWLEDGMENTS

The Consiglio Nazionale delle Ricerche gave financial support.

REFERENCES

- 1 F.A. Cotton and C.M. Lukehart, Progr. Inorg. Chem., 16 (1972) 487.
- 2 D.J. Cardin, B. Cetinkaya and M.F. Lappert, Chem. Rev., 72 (1972) 545.
- 3 J.S. Miller and A.L. Balch, Inorg. Chem., 11 (1972) 2069.
- 4 U. Schöllkopf and F. Gerhardt, Angew. Chem., 79 (1967) 578; Angew. Chem. Intern. Ed., 6 (1967) 560.
- 5 F. Bonati and G. Minghetti, Gazz. Chim. Ital., in press.
- 6 F. Bonati and G. Minghetti, Synth. Inorg. Metalorg. Chem., 1 (1971) 299.
- 7 F. Bonati and G. Minghetti, J. Organometal. Chem., in press.
- 8 F. Bonati and G. Minghetti, Quinto Convegno Nazionale di Chimica Inorganica, Taormina 25-28 Sept. 1972, Abstract A 10.
- 9 G. Minghetti and F. Bonati, Angew. Chem., 84 (1972) 482; Angew. Chem. Intern. Ed., 11 (1972) 429.
- 10 F. Bonati and G. Minghetti, J. Organometal. Chem., 24 (1970) 251; F. Bonati, G. Minghetti and E. Maionica, Gazz. Chim. Ital., 102 (1972) 731.

^{*}Satisfactory elemental analyses were obtained for compounds (I)-(IV) inclusive.